HEF4051B ## 8-channel analog multiplexer/demultiplexer Rev. 12 — 25 March 2016 **Product data sheet** ## 1. General description The HEF4051B is an 8-channel analog multiplexer/demultiplexer with three address inputs (S1 to S3), an active LOW enable input (\overline{E}), eight independent inputs/outputs (Y0 to Y7) and a common input/output (Z). The device contains eight bidirectional analog switches, each with one side connected to an independent input/output (Y0 to Y7) and the other side connected to a common input/output (Z). With \overline{E} LOW, one of the eight switches is selected (low-impedance ON-state) by S1 to S3. With \overline{E} HIGH, all switches are in the high-impedance OFF-state, independent of S1 to S3. If break before make is needed, then it is necessary to use the enable input. V_{DD} and V_{SS} are the supply voltage connections for the digital control inputs (S1 to S3, and \overline{E}). The V_{DD} to V_{SS} range is 3 V to 15 V. The analog inputs/outputs (Y0 to Y7, and Z) can swing between V_{DD} as a positive limit and V_{EE} as a negative limit. $V_{DD} - V_{EE}$ may not exceed 15 V. Unused inputs must be connected to V_{DD} , V_{SS} , or another input. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground). V_{EE} and V_{SS} are the supply voltage connections for the switches. ## 2. Features and benefits - Fully static operation - 5 V, 10 V, and 15 V parametric ratings - Standardized symmetrical output characteristics - Specified from -40 °C to +85 °C and -40 °C to +125 °C - Complies with JEDEC standard JESD 13-B ## 3. Applications - Analog multiplexing and demultiplexing - Digital multiplexing and demultiplexing - Signal gating # 4. Ordering information ### Table 1. Ordering information All types operate from -40 °C to +125 °C. | Type number | Package | | | |-------------|---------|--|----------| | | Name | Description | Version | | HEF4051BT | SO16 | plastic small outline package; 16 leads; body width 3.9 mm | SOT109-1 | | HEF4051BTS | SSOP16 | plastic shrink small outline package; 16 leads; body width 5.3 mm | SOT338-1 | | HEF4051BTT | TSSOP16 | plastic thin shrink small outline package; 16 leads; body width 4.4 mm | SOT403-1 | ## 5. Functional diagram 8-channel analog multiplexer/demultiplexer 8-channel analog multiplexer/demultiplexer HEF4051B All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2017. All rights reserved # 6. Pinning information ## 6.1 Pinning ## 6.2 Pin description Table 2. Pin description | Symbol | Pin | Description | |--------------------------------|----------------------------|-----------------------------| | E | 6 | enable input (active LOW) | | V _{EE} | 7 | supply voltage | | V _{SS} | 8 | ground supply voltage | | S1, S2, S3 | 11, 10, 9 | select input | | Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7 | 13, 14, 15, 12, 1, 5, 2, 4 | independent input or output | | Z | 3 | common output or input | | V_{DD} | 16 | supply voltage | All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2017. All rights re # **Functional description** #### 7.1 Function table Function table 11 | Inj | out | | | | | | Channel ON | |-----|-----|----|----|-----|----|--------------|------------| | E | E | | S3 | | S2 | S1 | | | L | | | L | 100 | L | L | Y0 to Z | | L | | | L | 1 | L | Н | Y1 to Z | | L | | | L | | Н | L | Y2 to Z | | L | | l. | L | | Н | Н | Y3 to Z | | L | | | Н | | L | L | Y4 to Z | | L | | | Н | | _ | Н | Y5 to Z | | L | | | Н | | Н | L | Y6 to Z | | L | | | Н | | Н | Н | Y7 to Z | | Н | X | | | X | X | switches off | | H = HIGH voltage level; L = LOW voltage level; X = don't care. ## **Limiting values** **Limiting values** In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to V_{SS} = 0 V (ground). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-------------------------|---|------|----------------|------| | V_{DD} | supply voltage | | -0.5 | +18 | V | | V _{EE} | supply voltage | referenced to V _{DD} | -18 | +0.5 | V | | I _{IK} | input clamping current | pins Sn and \overline{E} ;
V _I < -0.5 V or V _I > V _{DD} + 0.5 V | - | ±10 | mA | | VI | input voltage | | -0.5 | $V_{DD} + 0.5$ | V | | I _{I/O} | input/output current | | - 2 | ±10 | mA | | I _{DD} | supply current | | - | 50 | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | T_{amb} | ambient temperature | | -40 | +125 | °C | | P _{tot} | total power dissipation | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ [2] | 100 | | | | | | SO16 package | - | 500 | mW | | | | SSOP16 package | - | 500 | mW | | | | TSSOP16 package | - | 500 | mW | | Р | power dissipation | per output | - | 100 | mW | ^[1] To avoid drawing V_{DD} current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{DD} current will flow out of terminals Y, and in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed V_{DD} or V_{EE} . [2] For SO16 package: Ptot derates linearly with 8 mW/K above 70 °C. For SSOP16 and TSSOP16 packages: Ptot derates linearly with 5.5 mW/K above 60 °C. # **Recommended operating conditions** **Recommended operating conditions** | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|--------------------------------|------------------------|-----|-----|-----------------|------| | V_{DD} | supply voltage | see Figure 7 | 3 | - | 15 | V | | VI | input voltage | | 0 | _ | V _{DD} | V | | T _{amb} | ambient temperature | in free air | -40 | - | +125 | °C | | Δt/ΔV | input transition rise and fall | $V_{DD} = 5 \text{ V}$ | - | - | 3.75 | μs/V | | | rate | V _{DD} = 10 V | - | - | 0.5 | μs/V | | | | V _{DD} = 15 V | - | - | 0.08 | μs/V | Operating area as a function of the supply voltages ## 10. Static characteristics Table 6.Static characteristics $V_{SS} = V_{EE} = 0$ V; $V_I = V_{SS}$ or V_{DD} unless otherwise specified. | Symbol | Parameter | Conditions | V _{DD} | T _{amb} = | –40 °C | T _{amb} = | 25 °C | T _{amb} = | 85 °C | T _{amb} = | 125 °C | Unit | |----------|-----------------------|-------------------------|-----------------|--------------------|--------|--------------------|-------|--------------------|-------|--------------------|--------|------| | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | V_{IH} | HIGH-level | I _O < 1 μA | 5 V | 3.5 | - | 3.5 | - | 3.5 | - | 3.5 | - | V | | | input voltage | | 10 V | 7.0 | - | 7.0 | - | 7.0 | - | 7.0 | - | V | | | | | 15 V | 11.0 | - | 11.0 | - | 11.0 | - | 11.0 | - | V | | V_{IL} | LOW-level | I _O < 1 μA | 5 V | - | 1.5 | - | 1.5 | - | 1.5 | - | 1.5 | V | | | input voltage | 1 | 10 V | - | 3.0 | , - | 3.0 | | 3.0 | - | 3.0 | V | | | | _ A | 15 V | <i>M</i> - | 4.0 | /- | 4.0 | - | 4.0 | - | 4.0 | V | | II | input leakage current | | 15 V | - | ±0.1 | - | ±0.1 | _ | ±1.0 | - | ±1.0 | μΑ | ## 8-channel analog multiplexer/demultiplexer Table 6. Static characteristics ... continued $V_{SS} = V_{EE} = 0$ V; $V_I = V_{SS}$ or V_{DD} unless otherwise specified. | Symbol | Parameter | Conditions | V_{DD} | T _{amb} = | –4 0 °C | T _{amb} = | 25 °C | T _{amb} = | 85 °C | T _{amb} = | 125 °C | Unit | |---------------------|---------------------------------|---|----------|--------------------|----------------|--------------------|-------|--------------------|-------|--------------------|--------|------| | 7 | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | I _{S(OFF)} | OFF-state
leakage
current | Z port;
all channels OFF;
see <u>Figure 8</u> | 15 V | - | - | - | 1000 | - | - | - | | nA | | | | Y port; | 15 V | - | - | - | 200 | - | - | - | T | nA | | | | per channel;
see <u>Figure 9</u> | | | | | | | | | - 1 | | | I _{DD} | supply current | I _O = 0 A | 5 V | - | 5 | - | 5 | - | 150 | - | 150 | μΑ | | | | | 10 V | - | 10 | - | 10 | - | 300 | - | 300 | μΑ | | | | | 15 V | - | 20 | - | 20 | - | 600 | - | 600 | μΑ | | Cı | input capacitance | Sn, E inputs | - | · | - | - | 7.5 | - | _ | - | - | pF | #### 10.1 Test circuits Fig 8. Test circuit for measuring OFF-state leakage current Z port Fig 9. Test circuit for measuring OFF-state leakage current Yn port HEF4051B All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2017. All rights reserved ## 10.2 ON resistance Table 7. ON resistance $T_{amb} = 25$ °C; $I_{SW} = 200 \mu A$; $V_{SS} = V_{EE} = 0 \text{ V.}$ | Symbol | Parameter | Conditions | $V_{DD} - V_{EE}$ | Тур | Max | Unit | |-----------------------|------------------------|---|-------------------|-----|------|------| | R _{ON(peak)} | ON resistance (peak) | $V_I = 0 V \text{ to } V_{DD} - V_{EE};$ | 5 V | 350 | 2500 | Ω | | | | see Figure 10 and Figure 11 | 10 V | 80 | 245 | Ω | | | | | 15 V | 60 | 175 | Ω | | R _{ON(rail)} | ON resistance (rail) | V _I = 0 V; see <u>Figure 10</u> and <u>Figure 11</u> | 5 V | 115 | 340 | Ω | | | | | 10 V | 50 | 160 | Ω | | | | | 15 V | 40 | 115 | Ω | | | | $V_I = V_{DD} - V_{EE};$ | 5 V | 120 | 365 | Ω | | | | see Figure 10 and Figure 11 | 10 V | 65 | 200 | Ω | | | | | 15 V | 50 | 155 | Ω | | ΔR_{ON} | ON resistance mismatch | $V_I = 0 \text{ V to } V_{DD} - V_{EE}$; see <u>Figure 10</u> | 5 V | 25 | - | Ω | | | between channels | | 10 V | 10 | - | Ω | | | | | 15 V | 5 | | Ω | #### 10.2.1 ON resistance waveform and test circuit ## 8-channel analog multiplexer/demultiplexer ## 11. Dynamic characteristics Table 8. Dynamic characteristics $T_{amb} = 25 \, ^{\circ}\text{C}; \, V_{SS} = V_{EE} = 0 \, V; \, for \, test \, circuit \, see \, \underline{Figure \, 15}.$ | Symbol | Parameter | Conditions | V_{DD} | Тур | Max | Unit | |--|-------------------------------|-------------------------------|----------|-----|-----|------| | t _{PHL} | HIGH to LOW propagation delay | Yn, Z to Z, Yn; see Figure 12 | 5 V | 15 | 30 | ns | | | | | 10 V | 5 | 10 | ns | | | | | 15 V | 5 | 10 | ns | | | | Sn to Yn, Z; see Figure 13 | 5 V | 150 | 300 | ns | | | | | 10 V | 60 | 120 | ns | | | | | 15 V | 45 | 90 | ns | | t _{PLH} | LOW to HIGH propagation delay | Yn, Z to Z, Yn; see Figure 12 | 5 V | 15 | 30 | ns | | | | | 10 V | 5 | 10 | ns | | No. of the last | | | 15 V | 5 | 10 | ns | | | | Sn to Yn, Z; see Figure 13 | 5 V | 150 | 300 | ns | | | | | 10 V | 65 | 130 | ns | | | | | 15 V | 45 | 90 | ns | | t _{PHZ} | HIGH to OFF-state | E to Yn, Z; see Figure 14 | 5 V | 120 | 240 | ns | | | propagation delay | | 10 V | 90 | 180 | ns | | | | | 15 V | 85 | 170 | ns | | t _{PZH} | OFF-state to HIGH | E to Yn, Z; see Figure 14 | 5 V | 140 | 280 | ns | | | propagation delay | | 10 V | 55 | 110 | ns | | | | | 15 V | 40 | 80 | ns | | t _{PLZ} | LOW to OFF-state | E to Yn, Z; see Figure 14 | 5 V | 145 | 290 | ns | | | propagation delay | | 10 V | 120 | 240 | ns | | 1 | | | 15 V | 115 | 230 | ns | ### 8-channel analog multiplexer/demultiplexer **Dynamic characteristics** ...continued Table 8. $T_{amb} = 25$ °C; $V_{SS} = V_{EE} = 0$ V; for test circuit see <u>Figure 15</u>. | Symbol | Parameter | Conditions | V _{DD} | Тур | Max | Unit | |------------------|-------------------|---------------------------|-----------------|-----|-----|------| | t _{PZL} | OFF-state to LOW | E to Yn, Z; see Figure 14 | 5 V | 140 | 280 | ns | | | propagation delay | | 10 V | 55 | 110 | ns | | | | | 15 V | 40 | 80 | ns | ### 11.1 Waveforms and test circuit Table 9. Measurement points | Supp | oly voltage | - A | Input | Output | |-----------------|-------------|-----|--------------------|--------------------| | V _{DD} | 100 | | V _M | V _M | | 5 V to | o 15 V | | 0.5V _{DD} | 0.5V _{DD} | ## 8-channel analog multiplexer/demultiplexer Test data is given in Table 10. Definitions: DUT = Device Under Test. R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator. C_L = Load capacitance including test jig and probe. R_L = Load resistance. Fig 15. Test circuit for measuring switching times #### Table 10. Test data | Input | | | | Load | | S1 position | | | | 1 | | | |-------|----------------------|-----|------------------------------------|---------------------------------|--------------------|-------------|----------------|------------------------------------|------------------|-------------------------------------|-------------------------------------|-------| | | Yn, Z | | Sn and E | t _r , t _f | V _M | CL | R _L | t _{PHL} [1] | t _{PLH} | t _{PZH} , t _{PHZ} | t _{PZL} , t _{PLZ} | other | | | V _{DD} or ' | VEE | V _{DD} or V _{SS} | ≤ 20 ns | 0.5V _{DD} | 50 pF | 10 kΩ | V _{DD} or V _{EE} | V _{EE} | V _{EE} | V_{DD} | VEE | [1] For Yn to Z or Z to Yn propagation delays use V_{EE} . For Sn to Yn or Z propagation delays use V_{DD} . HEF4051B All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2017. All rights reserved ## 11.2 Additional dynamic parameters Table 11. Additional dynamic characteristics $V_{SS} = V_{EE} = 0 \text{ V; } T_{amb} = 25 \text{ }^{\circ}\text{C.}$ | Symbol | Parameter | Conditions | V_{DD} | | Тур | Max | Unit | |---------------------|---------------------------|---|----------|------------|--------|-----|------| | THD | total harmonic distortion | see Figure 16; $R_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$; | 5 V | <u>[1]</u> | 0.25 | - | % | | | | channel ON; $V_I = 0.5V_{DD}$ (p-p); $f_i = 1 \text{ kHz}$ | 10 V | <u>[1]</u> | 0.04 - | | % | | | | II — I KI IZ | 15 V | <u>[1]</u> | 0.04 | - | % | | f _(-3dB) | -3 dB frequency response | see Figure 17; $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$; | 5 V | <u>[1]</u> | 13 | - \ | MHz | | | | channel ON; $V_I = 0.5V_{DD}$ (p-p) | 10 V | <u>[1]</u> | 40 | - | MHz | | | | | 15 V | <u>[1]</u> | 70 | - | MHz | | α_{iso} | isolation (OFF-state) | see Figure 18; f_i = 1 MHz; R_L = 1 k Ω ; C_L = 5 pF; channel OFF; V_I = 0.5 V_{DD} (p-p) | 10 V | <u>[1]</u> | -50 | - | dΒ | | V _{ct} | crosstalk voltage | digital inputs to switch; see Figure 19;
$\underline{R}_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$;
\overline{E} or $Sn = V_{DD}$ (square-wave) | 10 V | | 50 | - | mV | | Xtalk | crosstalk | between switches; see Figure 20;
$f_i = 1 \text{ MHz}$; $R_L = 1 \text{ k}\Omega$;
$V_I = 0.5 V_{DD} \text{ (p-p)}$ | 10 V | [1] | -50 | - | dB | ^[1] f_i is biased at 0.5 V_{DD} ; $V_I = 0.5 V_{DD}$ (p-p). ### Table 12. Dynamic power dissipation P_D P_D can be calculated from the formulas shown; $V_{EE} = V_{SS} = 0$ V; $t_r = t_f \le 20$ ns; $T_{amb} = 25$ °C. | Symbol | Parameter | V_{DD} | Typical formula for P _D (μW) | where: | |----------------|---------------|----------|--|---| | P _D | dynamic power | 5 V | $P_D = 1000 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$ | f _i = input frequency in MHz; | | | dissipation | 10 V | $P_D = 5500 \times f_i + \Sigma (f_0 \times C_L) \times V_{DD}^2$ | f _o = output frequency in MHz; | | | | 15 V | $P_D = 15000 \times f_i + \Sigma (f_0 \times C_L) \times V_{DD}^2$ | C _L = output load capacitance in pF; | | | | | | V_{DD} = supply voltage in V; | | | | | | $\Sigma(C_L \times f_o) = \text{sum of the outputs.}$ | #### 11.2.1 Test circuits Fig 16. Test circuit for measuring total harmonic distortion Fig 17. Test circuit for measuring frequency response HEF4051B All information provided in this document is subject to legal disclaimers Nexperia B.V. 2017. All rights reserved 8-channel analog multiplexer/demultiplexer Fig 18. Test circuit for measuring isolation (OFF-state) a. Test circuit b. Input and output pulse definitions Fig 19. Test circuit for measuring crosstalk voltage between digital inputs and switch All information provided in this document is subject to legal disclaimers. B.V. 2017. All rights reserved 8-channel analog multiplexer/demultiplexer Fig 20. Test circuit for measuring crosstalk between switches ## 12. Package outline SO16: plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 | 0 | 2.5 | 5 mm | |---|-------|------| | | scale | | #### DIMENSIONS (inch dimensions are derived from the original mm dimensions) | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | ø | > | w | у | Z ⁽¹⁾ | θ | |--------|-----------|----------------|----------------|-----------------------|--------------|------------------|------------------|------------------|------|----------------|-------|----------------|----------------|------|------|-------|-------------------------|----| | mm | 1.75 | 0.25
0.10 | 1.45
1.25 | 0.25 | 0.49
0.36 | 0.25
0.19 | 10.0
9.8 | 4.0
3.8 | 1.27 | 6.2
5.8 | 1.05 | 1.0
0.4 | 0.7
0.6 | 0.25 | 0.25 | 0.1 | 0.7
0.3 | 8° | | inches | 0.069 | 0.010
0.004 | 0.057
0.049 | 0.01 | 1 | 0.0100
0.0075 | 0.39
0.38 | 0.16
0.15 | 0.05 | 0.244
0.228 | 0.041 | 0.039
0.016 | 0.028
0.020 | 0.01 | 0.01 | 0.004 | 0.028
0.012 | 0° | #### Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. | OUTLINE | 9 | REFER | RENCES | EUROPEAN | ISSUE DATE | | |----------|--------|--------|--------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | JEITA | PROJECTION | 135UE DATE | | | SOT109-1 | 076E07 | MS-012 | | | 99-12-27
03-02-19 | | Fig 21. Package outline SOT109-1 (SO16) All information provided in this document is subject to legal disclaimers Nexperia B.V. 2017. All rights reserve 8-channel analog multiplexer/demultiplexer SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm **SOT338-1** | UNIT | A
max. | A ₁ | A ₂ | A ₃ | b _p | C | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | Q | > | w | у | Z ⁽¹⁾ | θ | |------|-----------|----------------|----------------|-----------------------|----------------|--------------|------------------|------------------|------|------------|------|--------------|------------|-----|------|-----|------------------|----------| | mm | 2 | 0.21
0.05 | 1.80
1.65 | 0.25 | 0.38
0.25 | 0.20
0.09 | 6.4
6.0 | 5.4
5.2 | 0.65 | 7.9
7.6 | 1.25 | 1.03
0.63 | 0.9
0.7 | 0.2 | 0.13 | 0.1 | 1.00
0.55 | 8°
0° | #### Note . Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | 197 | REFER | ENCES | EUROPEAN | ISSUE DATE | |----------|-----|--------|-------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | PROJECTION | ISSUE DATE | | SOT338-1 | | MO-150 | | | 99-12-27
03-02-19 | Fig 22. Package outline SOT338-1 (SSOP16) TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm SOT403-1 0 2.5 5 mm scale #### **DIMENSIONS** (mm are the original dimensions) | | - ' | | | | | , | | | | | | | | | | | | | |------|-----------|----------------|----------------|-----------------------|--------------|------------|------------------|------------|------|------------|---|--------------|------------|-----|------|-----|------------------|----------| | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E (2) | е | HE | ٦ | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | | mm | 1.1 | 0.15
0.05 | 0.95
0.80 | 0.25 | 0.30
0.19 | 0.2
0.1 | 5.1
4.9 | 4.5
4.3 | 0.65 | 6.6
6.2 | 1 | 0.75
0.50 | 0.4
0.3 | 0.2 | 0.13 | 0.1 | 0.40
0.06 | 8°
0° | #### Notes 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | ENCES | EUROPEAN ISSUE DA | | | | | |----------|-----|--------|-------|-------------------|------------|----------------------------------|--|--| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | | | SOT403-1 | | MO-153 | | | | -99-12-27
03-02-18 | | | Fig 23. Package outline SOT403-1 (TSSOP16) All information provided in this document is subject to legal disclaimers © Nexperia B.V. 2017. All rights reserve ## 13. Abbreviations ### Table 13. Abbreviations | Acronym | Description | | |---------|-------------------|--| | DUT | Device Under Test | | # 14. Revision history ## Table 14. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |------------------|---------------------------------|------------------------------|-------------------------|------------------| | HEF4051B v.12 | 20160325 | Product data sheet | - | HEF4051B v.11 | | Modifications: | Type number | er HEF4051BP (SOT38-4) re | emoved. | | | HEF4051B v.11 | 20140911 | Product data sheet | - | HEF4051B v.10 | | Modifications: | • <u>Figure 19</u> : T | est circuit modified | | | | HEF4051B v.10 | 20111117 | Product data sheet | - | HEF4051B v.9 | | Modifications: | Legal pages | updated. | | | | | Changes in | "General description", "Feat | tures and benefits" and | "Applications". | | HEF4051B v.9 | 20100325 | Product data sheet | - | HEF4051B v.8 | | HEF4051B v.8 | 20100301 | Product data sheet | - | HEF4051B v.7 | | HEF4051B v.7 | 20091127 | Product data sheet | - | HEF4051B v.6 | | HEF4051B v.6 | 20090924 | Product data sheet | - | HEF4051B v.5 | | HEF4051B v.5 | 20090826 | Product data sheet | - | HEF4051B v.4 | | HEF4051B v.4 | 20050112 | Product data sheet | - | HEF4051B_CNV v.3 | | HEF4051B_CNV v.3 | 19950101 | Product specification | - | HEF4051B_CNV v.2 | | HEF4051B_CNV v.2 | 19950101 | Product specification | - | - | ## 15. Legal information #### 15.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions". - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com. #### 15.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### 15.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - los profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia. Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. HEF4051B All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2017. All rights reserved #### 8-channel analog multiplexer/demultiplexer **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications. **Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. #### 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. ### 16. Contact information For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com HEF4051B All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2017. All rights reserved Product data sheet Rev. 12 — 25 March 2016 21 of 22 Nexperia HEF4051B 8-channel analog multiplexer/demultiplexer ## 17. Contents | 1 / | General description | . 1 | |--------------|---|-----| | 2 | Features and benefits | . 1 | | 3 | Applications | . 1 | | 4 | Ordering information | . 2 | | 5 | Functional diagram | . 2 | | 6 | Pinning information | . 5 | | 6.1 | Pinning | . 5 | | 6.2 | Pin description | . 5 | | 7 | Functional description | . 6 | | 7.1 | Function table | . 6 | | 8 | Limiting values | . 6 | | 9 | Recommended operating conditions | . 7 | | 10 | Static characteristics | . 7 | | 10.1 | Test circuits | . 8 | | 10.2 | ON resistance | . 9 | | 10.2.1 | ON resistance waveform and test circuit | . 9 | | 11 | Dynamic characteristics | | | 11. 1 | Waveforms and test circuit | 11 | | 11.2 | Additional dynamic parameters | | | 11.2.1 | Test circuits | 13 | | 12 | Package outline | 16 | | 13 | Abbreviations | 19 | | 14 | Revision history | 19 | | 15 | Legal information | 20 | | 15.1 | Data sheet status | 20 | | 15.2 | Definitions | 20 | | 15.3 | Disclaimers | 20 | | 15.4 | Trademarks | 21 | | 16 | Contact information | 21 | | 17 | Contents | 22 | For more information, please visit. http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 25 March 2016 # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: ## Nexperia: HEF4051BP,652 HEF4051BT,652 HEF4051BT,653 HEF4051BT,013 HEF4051BTS,112 HEF4051BTS,118 HEF4051BTT,118 HEF4051BT/AUJ